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ABSTRACT: We employed 1H NMR spectroscopy to examine the molecular profile of a white “Fiano di Avellino” wine
obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The
latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between
wine molecular quality and its geographical origin. 1H NMR spectra, where water and ethanol signals were suppressed by a
presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines.
Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant
diversity in the wine metabolomes. Our results indicate that metabolomics by 1H NMR spectroscopy combined with multivariate
statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing
to objectively relate wine quality to the terroir.

KEYWORDS: nuclear magnetic resonance, T1-filtered spectra, autochthonous yeast starter, “Fiano di Avellino” white wine,
metabolomic, chemometric techniques

■ INTRODUCTION

An ever-increasing interest is placed by large-scale wine
producers on the ecology and evolution of yeasts during
alcoholic fermentation of grape wine, to assess a correlation
between microbial populations and wine molecular quality. The
diversity of yeast communities collected from grapes was shown
to depend on several factors, such as the vineyard geographical
location,1,2 grape variety, degree of grape maturation, and
harvesting technique.3,4 The use of selected yeasts in wine-
making provides a number of advantages: (i) fast increase of
yeast concentration into grape must, inducing a rapid start of
alcoholic fermentation;5,6 (ii) full consumption of fermentable
sugars and great ethanol content in the final wine product;7,8

(iii) inhibition of potential spoilage microorganisms with
consequent assurance of wine stability;9−11 (iv) large
concentration of secondary metabolites in wine;12,13 (v) finest
control of subtlety and individuality of wine flavor.14,15

Within the current emphasis to relate wine properties to the
terroir of vineyards, most wine producers began to start
alcoholic fermentation by employing indigenous yeasts rather
than commercial starters, which are isolated in sites away from
wine-producing areas. Although the latter are reckoned to
maintain constancy of wine quality, yeasts originated from
microareas where wines are produced guarantee correlation
between wine identity and geographical origin of grapes and
even provide greater wine quality.16 As different yeast starters
mostly determine variations in wine organoleptic properties, a
corresponding change in wine molecular composition is also
expected.17 In fact, although grapes provide the basic wine
chemical constituents, most chemicals found in wines are
produced by metabolic activities of yeasts as well as by lactic
acid bacteria during the wine-making process.18 These
metabolic products should be carefully characterized by

modern analytical techniques to assess the contribution of
indigenous microorganisms to the wine terroir. Moreover, the
identification and quantification of the main metabolites
(metabolome) of wines becomes useful to understand the
response of primary and secondary metabolism induced by
environmental perturbations and wine-making practices such as
fermentation.19

Nuclear magnetic resonance (NMR) spectroscopy is
increasingly used to characterize the metabolic composition
of wines.18,20−25 Highly reproducible spectra of wine samples
can be rapidly obtained by liquid-state NMR spectroscopy
without sample pretreatments, thereby enabling a simultaneous
determination of several low-molecular mass components in
the complex wine mixtures.26,27 Besides, these large spectral
data sets can be efficiently simplified by multivariate statistical
techniques28−30 to highlight the most discriminating wine
metabolites, which become the basis for the identification and
classification of different wines.20,22,23,31−33

The aim of this study was to use 1H NMR spectroscopy to
evaluate the molecular profiles of two “Fiano di Avellino” wines
produced with the same grape variety and oenological
techniques but fermented with either a commercial (C) or an
autochthonous (A) yeast starter.

■ MATERIALS AND METHODS
Yeast Selection and Wine Production. Eight “Fiano di

Avellino” vineyards were subjected in October 2009 to sampling of
grapes and berries within the production area of this grape variety in
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Campania Region (Italy), marked as controlled and guaranteed
denomination of origin (CGDO). Sampling and storage of grapes and
berries were conducted by a method already described.34

The wild yeasts isolated from samples underwent a genotypical
screening (5.8S internal transcribed spacer-PCR, inter-δ-PCR, and
random amplified polymorphic DNA-PCR) to enable differentiation at
strain level.34 Moreover, 17 yeast strains of the S. cerevisiae species
were selected and subjected to a number of oenological tests,34 and the
strain that revealed the greatest technological potentials was used as a
starter culture to produce wine A. A common commercial S. cerevisiae
strain was employed as a yeast starter to produce wine C. Both wines
A and C were obtained in a large-scale wine-making process at the
”MASTROBERARDINO s.p.a.” winery in Avellino (Campania, Italy)
to produce the CGDO “Fiano di Avellino” wine.
Wine fermentation and aging were conducted in steel tanks.

Microbiological screenings were again performed on must and wine
samples collected during the most critical technological phases of the
two parallel wine-making processes, to verify that the inoculated
strains remained dominant during the entire fermentation process.
Finally, the two experimental wines were bottled after six months.
Among the 40 bottles of “Fiano di Avellino” wine that underwent

NMR spectroscopy, 20 were obtained with autochthonous (A) and 20
with commercial (C) yeast starter. The pH was measured on 100 mL
of wine immediately after bottle uncorking, and the average pH of
wines A and C was 3.17 and 3.28 ± 0.03, respectively.
NMR Experiments. Wine samples were prepared by mixing 0.25

mL of wine with 0.75 mL of deuterated water (99.8% D2O/H2O,
Armar Chemicals), containing 2% (v/v) formic acid (98−100% RG,
Merck Chemicals) as internal standard.23 Each sample mixture was
stirred in a vortex and transferred into a stoppered 5 mm NMR tube,
whose remaining void volume was degassed gently by a N2 flux. The
content of ethanol and acetic acid was quantified by acquiring a proton
spectrum with only water presaturation and comparing signal intensity
to 3-(trimethylsilyl) propionic acid sodium salt (TMSPA) standard
(Merck, Darmstadt, Germany) added in a 0.2 mg mL−1 concentration
to five replicates of both A and C wines in the NMR tube.
A 400 MHz Bruker Avance spectrometer, equipped with a 5 mm

BBI Bruker probe and working at the 1H frequency of 400.13 MHz,
was used to conduct all liquid-state NMR measurements at a
temperature of 298 ± 1 K. Monodimensional 1H spectra were
acquired with 3.5 s of thermal equilibrium delay, a 90° pulse length
ranging between 8 and 8.6 μs (−2 dB of attenuation), 96 transients,
32 768 time domain points, and 16 ppm (6410.3 Hz) as spectral width.
Intense ethanol signals were suppressed by adopting a T1-filter
consisting of an inversion−recovery pulse sequence.23,35,36 Because
ethanol protons showed a longitudinal relaxation time significantly
longer than wine metabolites, a 3 s delay (τ) was introduced in the
inversion recovery pulse sequence (180°−τ−90°). This delay provided
an almost complete recovery of metabolites signals before complete
relaxation of ethanol multiplets, thereby ensuring a total annulment of
ethanol resonances. In addition, the combination of such a sequence
with on-resonance presaturation (4.706 ± 0.001 ppm) enabled the
efficient multisuppression of both ethanol and water signals. The free
induction decays (FIDs) were Fourier transformed with a function size
of 65 536 points, applying a 0.2 Hz line-broadening.
Structural identification of wine metabolites was achieved by 2D

NMR experiments, consisting of homonuclear 1H−1H COSY
(correlation spectroscopy) and TOCSY (total correlation spectrosco-
py) as well as heteronuclear 1H−13C HSQC (heteronuclear single-
quantum correlation) and HMBC (heteronuclear multiple bond
correlation). Because an excitation sculpting block was implemented in
both 2D homonuclear experiments to remove the protonic ethanol
signals, a specific shape pulse was built by modifying the basic shape
pulse SQUA100.1000 reported by Bruker Topspin. The best shape
pulse length and power calibration consisted of 8000 μs for all
samples, respectively, and in a range from 25.45 to 33.9 dB, depending
on the sample. All 2D experiments had a spectral width of 16 (6 410.3
Hz) and 300 (30 186.8 Hz) ppm for 1H and 13C nuclei, respectively,
and a time domain of 2 048 points (F2) and 512 experiments (F1). All
homonuclear 2D spectra consisted of 16 dummy scans and 64 total

transients, while for the TOCSY experiment a mixing time of 80 ms
and a trim pulse length of 2 500 ms were adopted. HSQC and HMBC
heteronuclear experiments were acquired with 16 dummy scans, 80
total transients, and 0.5 μs of trim pulse length. Moreover,
optimization of the latter experiments was achieved with 145 and
6.5 Hz as the optimal 1H −13C short and long-range J-couplings,
respectively. A baseline correction was applied to all mono- and
bidimensional spectra, and the proton frequency axis was calibrated by
associating the formic acid signal at 8.226 ppm.37 Spectra were
processed by using both Bruker Topspin Software (v.2.1) and
MestReC NMR Processing Software (v.4.9.9.9).

Multivariate Data Analyses. The multivariate analyses were
applied to 1H NMR spectra which were preliminarily divided into 115
buckets. The bucket intervals had variable widths (the largest one
comprised 0.08 ppm), so that each bucket included either individual
signals or distinct multiplets, when no signals overlapping occurred.
Buckets were selected over the 7.8−0.4 ppm spectral region and were
applied to all spectra because no significant chemical shifts drifts were
observed for either A or C wines. Prior to multivariate analysis, spectra
were normalized by dividing each single bucket area by the sum of all
signal areas and Pareto-scaled for PCA (principal component analysis),
DA (discriminant analysis), and HCA (hierarchical cluster analysis).
The DA method consisted of building a validation set, achieved by
dividing all samples in either a training or a test set. The former set
used a discriminant model formed by 27 of the 40 samples, whereas
the remaining 13 samples comprised the latter set to test the model. A
similar partition, containing around 32.5% of samples in the test set,
allowed a sufficient number of samples in the training set as well as a
representative number of samples in the test set.22 This validation was
repeated 5 times by changing, each time randomly, the samples
included in the training and test set. An HCA was conducted by
executing a hierarchical ascendant clusterization. The extent of
similarity among samples was measured by Euclidean distances,
whereas cluster aggregation was based on the Ward method.28,38

Statistical data elaboration was achieved by the XLStat software v.7.5.2
(Addinsoft).

■ RESULTS

On-resonance presaturation combined with T1-filter
23,35 was

applied to suppress ethanol (a triplet at 1.184 ppm and a
quartet at 3.641 ppm) and water (a singlet at 4.706 ppm)
signals, because their large intensities not only masked other
meaningful peaks but also overlapped other nearby signals.
Figure 1 shows a 1H spectrum of wine C resulting from
multisuppression, whereby water and ethanol as well as the
acetic acid signal (2.08 ppm) were removed (the corresponding
negative intensities were due to relatively longer T1 relaxation
times).

Figure 1. 1H NMR spectrum of wine C obtained by suppressing
ethanol and water signals by T1-filter. Arrows indicate signals of
molecules that significantly contributed to differentiate wines samples.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf403567x | J. Agric. Food Chem. 2013, 61, 10816−1082210817



A second proton spectrum (data not shown) was acquired
without the T1-filter for samples added with TMSPA, with the
aim to separately measure the intensities of ethanol and acetic
acid. Larger amounts of ethanol were detected in wines C than
wines A (3.403 ± 0.52% more abundant), while no significant
differences in acetic acid content were appreciated.
NMR signals belonging to selected molecules, whose

amounts were significantly different in wines treated with
either autochthonous or commercial yeasts, were magnified in
the four expanded 1H spectra of Figure 2. Molecular attribution

of these signals was achieved by combining spectral
interpretation of 1D and 2D (spectra not shown) NMR
spectra, which were confirmed by literature molecular assign-
ments.18,20,39 Signals of metabolites that most largely differ-
entiated A from C wines corresponded to α-glucose, fructose,
glycerol, and succinic acid (Figure 2, Table 1). The greatest
concentrations of fructose and glucose were found in wines A,
whereas wines C were richer in succinate and glycerol.
The selected buckets (115) resulting from proton NMR

spectra elaboration were equally applied to all wine spectra and
produced a matrix composed of 40 observations (wine
samples) and 115 variables (intensities of NMR signals). An
unsupervised pattern-recognition PCA was then performed to
evaluate the intrinsic variation within this dense data set. PCA
calculates linear combinations of a starting set of variables on
the basis of their maximum variance and reduces the
dimensionality of the original data matrix, while retaining the
maximum amount of variability, as well as the original
information contained in the data set.28,38 Moreover, PCA

offers the practical advantage of exploring the response of many
different samples with a large number of variables in a single
output (score-plot).
The score-plot resulting from PCA achieved by combining

PC1 (96.4% explained variance) and PC2 (2.46% explained
variance) is shown in Figure 3. A clear differentiation among
wines was observed along the PC1 where wines A were placed
in negative PC1 values, whereas wines C were displayed in
positive PC1 values. In addition, the fact that the observations
of A and C wines were placed within distinct confidence limits
(Hotelling T2 test28) strengthened the reliability of such
separation. Because variables associated to PC2 did not
contribute significantly to discriminate wines, attention was
exclusively focused on PC1 and relative loading plot (Figure 4).
The loading plot revealed that the variance associated to α-
glucose, fructose, glycerol, and succinic acid had the largest
weight in PC1, and that α-glucose and fructose were negatively
correlated while glycerol and succinic acid were positively
correlated. Moreover, PCA even revealed that the bucket
including the overlapped leucine and isoleucine CH3− signals
(Leu/Isol) was an additional variable capable to differentiate
wines. In detail, the largest, even though moderate, Leu/Isol
amount was correlated to positive PC1 values (Figure 4). The
analysis of variance (ANOVA) conducted for these variables
showed that all of them contributed significantly to wine
differentiation within a 95% confidence interval (Fisher test).28

Because the HCA allows recognition and distribution of data
groupings in clusters of progressive dissimilarity, it was adopted
as a further unsupervised method to classify wines with
different yeast treatments according to their molecular affinity.
Samples of different wine characteristics became organized in
two distinct macroclusters (Figure 5), where the first
dendrogram knot was associated to inter- and intraclass
dispersions of 9.664 and 1.551, respectively.
Discriminant analysis (DA) is a supervised statistical method

for sample classification. The DA discriminant functions are
extracted from a data matrix composed of independent
variables, with the aim to maximize interclass variance and
minimize intraclass variance. This criterium may be supported
by a validation test that evaluates the statistical confidence by
which an a priori classification of part of sample observations
(test set) coincides with an a posteriori DA prediction, on the
basis of information provided by the remaining samples
(training set). When the five DA validation tests were

Figure 2. 1H spectral regions of C (black) and A (gray) wines showing
signals for α-glucose (5.35−5.15 ppm), fructose (4.08−3.78 ppm),
glycerol (3.58−3.49 ppm), and succinic acid (2.98−2.48 ppm).

Table 1. 1H Chemical Shift and Assignment of Signals That
Mostly Differentiated Wine Samples

assignments bucket number bucket interval (ppm) δ (ppm)

fructose 26 4.034−4.02 4.0283
27 4.006−3.991 3.9967
28 3.991−3.962 3.9797
30 3.879−3.86 3.8693
33 3.761−3.746 3.7531
34 3.688−368 3.6831

α-glucose 5 5.191−5.167 5.1801
succinic acid 83 2.68−2.648 2.6658
glycerol 36 3.58−3.563 3.5662

39 3.556−3.543 3.5502
41 3.526−3.511 3.5208

leucine/isoleucinea 114 0.979−0.906 0.9575
aThe bucket includes the overlapped signals of isoleucine and leucine
CH3− protons.
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performed on spectra of the differently treated wines, each
sample was correctly associated to the respective group with
100% success and a significance of 0.05 for all developed
discriminant models.

■ DISCUSSION
We found the correct conditions in the NMR pulse sequence
(3 s delay between first 180° and second 90° hard pulse) to
allow ethanol signals to be efficiently suppressed while retaining

all other metabolic signals. Hence, we recovered all meaningful
signals in spectra without any significant loss in intensity
(Figure 1), except for acetic acid, whose singlet at 2.08 ppm was
also canceled by the T1-filter.
Differences between wines treated with autochthonous and

commercial yeasts were noticed in the corresponding NMR
spectra. For example, NMR spectra of wines obtained by
autochthonous yeasts revealed the greatest concentrations of
fructose and glucose and the smallest amounts of succinate and

Figure 3. Principal component analysis (PCA) score-plot (PC1 vs PC2) of spectral data obtained from 1H NMR spectra of wines produced with
autochthonous (A; closed triangles) or commercial (C; open circles) yeast starter. The explained variance (%) is reported for each principal
component, and dotted ellipses represent the 95% confidence limits for each wine type.

Figure 4. Loading-plot of variables associated with PC1 (96.4% explained variance). Reported assignment is for signals resonating in buckets
showing the largest loading values.
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glycerol. The score-plot resulting from the PCA (PC1 vs PC2)
elaboration of NMR spectra of the two differently treated wines
is reported in Figure 3. The most informative component was
the PC1 because the variance for the total data set was almost
completely explained (96.4%) by this factorial axis. The PCA
score-plot reveals that the best differentiation between the two
wine samples occurred prevalently along the PC1 axis. The
multivariate PCA projects the original observations in a new
variance-controlled reference system and provides a final
bidimensional score-plot, which may be interpreted on the
basis of loading-plot information.28 Consequently, the closer
the objects are in a space defined by variables, the more similar
are their properties. Because the loading-plot describes the
correlation existing between each factorial axis and the
variables, the distribution of wine samples obtained by
autochthonous yeasts toward the negative PC1 values is
represented in the loading-plot by a larger amount of fructose
and α-glucose, and by a lower amount of glycerol and succinic
acid, than for wines produced with commercial yeast (Figure
4). Similarly, PCA helped to highlight the significant
contribution of the Leu/Isol signal variable, whose abundance
was systematically larger in the latter than in the former wine
samples (Figure 4).
The diversity detected in the two wine metabolomes should

be mainly explained by a different response in yeasts
metabolism, because other parameters in the wine-making
technological processes were kept strictly similar for both wine
samples. The abundant content of glucose and fructose in
wines produced with autochthonous S. cerevisiae suggests a
slower glycolytic activity than that by the commercial yeast
during alcoholic fermentation and, thus, a less efficient
conversion of carbohydrates in ethanol.5 Such a lower activity
for autoctonous starters also may be inferred by the greater

amount of glycerol in wines produced with commercial yeasts,
because glycerol is the final product of the glycerol pyruvate
fermentation. In addition, the NMR spectra recorded without
the T1-filter revealed a greater ethanol content in the C wine,
because glycerol formation accompanies ethanol production
during the anaerobic sugar fermentation in wines.40 These
findings are in line with new oenological approaches aiming to
produce wines with low ethanol content through yeasts that
enhance glycerol pyruvate fermentation.41 Furthermore, the
large content of succinic acid in C wines is additional evidence
of the larger fermentation properties of commercial yeasts, with
succinic acid being one of the main fermentation byproducts.17

Thus, our results suggest that the progressive consumption of
glucose, accompanied by glycerol, succinate, and ethanol
production, reflected the yeast activities during wine-making.
The relationship between yeast and wine composition was
already indicated by Son et al.,18 who followed the fermentation
behavior of yeasts at different stages of wine-making by
applying 1H NMR spectroscopy to musts and wines. Finally,
the different contents of Leu/Isol in the two wine samples may
be explained by the different capacity of the employed yeasts to
synthesize these amino acids.10,42

The efficacy of NMR spectroscopy to reveal a metabolic
composition that discriminates wine samples was further
indicated by the HCA elaboration, which showed clear-cut
separation between the two different wines investigated here
(Figure 5). In fact, the HCA showed that the interclass
dispersion was around 6.2 times greater than the intraclass
dispersion and confirmed the results from PCA score-plot.
Moreover, the discriminating capacity of the statistical method
was also proved by a DA exercise in which 100% of success
(0.05 significance) was achieved at each performed validation.

Figure 5. Dendrogram of wines C and A resulting from hierarchical cluster analysis (HCA) and main descriptive values. The dissimilarity among
samples was measured by Euclidean distance, whereas cluster aggregation was achieved by the Ward method.
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This study not only confirmed that 1H NMR spectroscopy,
combined with multivariate statistical analyses, can rapidly
assess the molecular profile of wines but also enabled us to
efficiently distinguish wines whose fermentation was achieved
by different yeast starters. In particular, NMR spectra obtained
here provided sufficient metabolomic data to successfully
differentiate between two “Fiano di Avellino” wines produced
with the same grape must and oenological techniques, except
for fermentation that was started by either autochthonous or
commercial yeast strains. The introduction of a calibrated T1-
filter in the NMR pulse sequence allowed acquisition of greatly
reproducible and resolved proton spectra without the
interference of ethanol and water signals. Even though other
advanced NMR pulse sequences are available to efficiently
suppress undesired signals,31,43 the T1-filter sequence adopted
here was effective in removing both ethanol and water signals,
while remaining simple and rapid to apply.23 The statistical
PCA elaboration of NMR spectral data enabled the
identification of differences in wine metabolomes, such as the
diverse content of fructose, glucose, glycerol, fructose,
isoleucine, and leucine. The discrimination capacity of the
combined use of NMR spectroscopy and PCA multivariate
statistics was further proved by hierarchical cluster analysis. The
results of the metabolomic investigation reported here can be
correlated to the diverse fermentation efficiency exerted by
either autochthonous or commercial yeasts, thus indicating the
potential of the NMR metabolomic approach in evaluating
wine quality and wine-making processes.
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